Uncertainty-Aware Image Captioning

نویسندگان

چکیده

It is well believed that the higher uncertainty in a word of caption, more inter-correlated context information required to determine it. However, current image captioning methods usually consider generation all words sentence sequentially and equally. In this paper, we propose an uncertainty-aware framework, which parallelly iteratively operates insertion discontinuous candidate between existing from easy difficult until converged. We hypothesize high-uncertainty need prior make correct decision should be produced at later stage. The resulting non-autoregressive hierarchy makes caption explainable intuitive. Specifically, utilize image-conditioned bag-of-word model measure apply dynamic programming algorithm construct training pairs. During inference, devise uncertainty-adaptive parallel beam search technique yields empirically logarithmic time complexity. Extensive experiments on MS COCO benchmark reveal our approach outperforms strong baseline related both quality as decoding speed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phrase-based Image Captioning

Generating a novel textual description of an image is an interesting problem that connects computer vision and natural language processing. In this paper, we present a simple model that is able to generate descriptive sentences given a sample image. This model has a strong focus on the syntax of the descriptions. We train a purely bilinear model that learns a metric between an image representat...

متن کامل

Domain-Specific Image Captioning

We present a data-driven framework for image caption generation which incorporates visual and textual features with varying degrees of spatial structure. We propose the task of domain-specific image captioning, where many relevant visual details cannot be captured by off-the-shelf general-domain entity detectors. We extract previously-written descriptions from a database and adapt them to new q...

متن کامل

Convolutional Image Captioning

Image captioning is an important but challenging task, applicable to virtual assistants, editing tools, image indexing, and support of the disabled. Its challenges are due to the variability and ambiguity of possible image descriptions. In recent years significant progress has been made in image captioning, using Recurrent Neural Networks powered by long-short-term-memory (LSTM) units. Despite ...

متن کامل

Image Captioning with Attention

In the past few years, neural networks have fueled dramatic advances in image classi cation. Emboldened, researchers are looking for more challenging applications for computer vision and arti cial intelligence systems. They seek not only to assign numerical labels to input data, but to describe the world in human terms. Image and video captioning is among the most popular applications in this t...

متن کامل

Image Captioning using Visual Attention

This project aims at generating captions for images using neural language models. There has been a substantial increase in number of proposed models for image captioning task since neural language models and convolutional neural networks(CNN) became popular. Our project has its base on one of such works, which uses a variant of Recurrent neural network coupled with a CNN. We intend to enhance t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the ... AAAI Conference on Artificial Intelligence

سال: 2023

ISSN: ['2159-5399', '2374-3468']

DOI: https://doi.org/10.1609/aaai.v37i1.25137